摘 要: 液位測量是核電站自動控制系統(tǒng)中的重要組成部分。導(dǎo)波雷達(dá)液位計基于電磁波時域反射( TDR) 原理,具有受環(huán)境影響小、測量精度高等特點(diǎn)。導(dǎo)波雷達(dá)液位計作為一種新型的液位測量手段,已經(jīng)在核電領(lǐng)域有了廣泛的應(yīng)用,但是在其應(yīng)用過程中也遇到了一定的問題。針對福清核電汽水分離再熱系統(tǒng)疏水箱液位計頻繁出現(xiàn)的支撐件破碎、密封失效以及蒸汽補(bǔ)償漂移等問題,進(jìn)行了原因分析并給出了解決措施。通過對導(dǎo)波雷達(dá)液位計的改造,使得導(dǎo)波雷達(dá)液位計在核電高溫蒸汽系統(tǒng)中得到了應(yīng)用,提高了汽水分離再熱疏水液位測量的可靠性,保障了機(jī)組運(yùn)行安全。該研究對推動導(dǎo)波雷達(dá)液位計在蒸汽系統(tǒng)中應(yīng)用提供有力支持,對導(dǎo)波雷達(dá)這種新型液位計未來在更多測量環(huán)境中的應(yīng)用起到了積極作用。
導(dǎo)波雷達(dá)液位計在福清核電的應(yīng)用及改進(jìn)
引言
導(dǎo)波雷達(dá)液位計作為一種新興的液位測量儀表,克服了傳統(tǒng)儀表的不足,在核電廠的應(yīng)用逐漸增多。但導(dǎo)波雷達(dá)液位計在高溫高壓蒸汽系統(tǒng)使用時,還存在一些不足,導(dǎo)致系統(tǒng)液位測量失真[1]。汽水分離再熱系統(tǒng)是核電廠汽輪機(jī)的重要輔助系統(tǒng),主要應(yīng)用于汽輪機(jī)運(yùn)行期間,通過控制進(jìn)入二級再
熱管束的蒸汽量,對高壓缸排氣進(jìn)行除濕和再熱,使進(jìn)入低壓缸的蒸汽有一定的過熱度。其應(yīng)用改善了汽輪機(jī)低壓缸的工作條件,提高了汽輪機(jī)的相對內(nèi)效率,減少了濕蒸汽對汽輪機(jī)零部件的刷蝕。在福清 1 ~ 4 號機(jī)組調(diào)試及運(yùn)行期間,汽水分離再熱系統(tǒng)二級疏水箱液位計多次出現(xiàn)故障,如液位計探桿泄漏、測量失效等。針對二級疏水箱液位計問題,采用新型測量方案,對汽水分析再熱系統(tǒng)二級疏水液位測量作優(yōu)化改進(jìn)。
1 導(dǎo)波雷達(dá)物位計測量原理及特點(diǎn)
( 1) 導(dǎo)波雷達(dá)液位計的工作原理。
導(dǎo)波雷達(dá)液位計基于電磁波時域反射原理[2],由電磁波發(fā)生器發(fā)射一個電磁脈沖信號發(fā)射到導(dǎo)波體上,以導(dǎo)波體作為信號的傳輸載體。當(dāng)遇到被測介質(zhì)表面時,部分信號被反射形成回波并沿相同路徑返回脈沖發(fā)射裝置。發(fā)射裝置與被測介質(zhì)表面的距離同脈沖在其間的傳播時間成正比,測量發(fā)射與反射脈沖[3]。導(dǎo)波雷達(dá)液位計測量原理如圖 1 所示。
導(dǎo)波雷達(dá)液位計測量原理圖
( 2) 導(dǎo)波雷達(dá)液位計的測量特點(diǎn)。
①電磁波信號沿導(dǎo)波桿傳輸可消除假回波信號,減少信號丟失。
②整個測量裝置無活動部件,無機(jī)械磨損。
③安裝調(diào)試方便。
④不受介質(zhì) 密度變 化 的 影 響 ( 但 是 需 要 單 一 介質(zhì)) 。
⑤使用與高溫、高壓的物位測量。
2 現(xiàn)有設(shè)計缺陷導(dǎo)致測量不穩(wěn)定的原因分析
核電廠二回路液位控制是核電廠重要的控制系統(tǒng)之一,其測量環(huán)境需考慮真空、高溫、泡沫等多方面因素。傳統(tǒng)液位儀表因其固有原理,無法通過自身技術(shù)的改進(jìn)來消除誤差。故本文采用了導(dǎo)波雷達(dá)液位計[4]。但在機(jī)組運(yùn)行過程中,汽水分離再熱系統(tǒng)原有導(dǎo)波雷達(dá)液位計導(dǎo)波桿的支撐件會破碎,支撐件碎片會進(jìn)入到二回路系統(tǒng)中,形成異物,危及機(jī)組安全[5]。同時,導(dǎo)波桿內(nèi)支撐件破碎后,因振動、沖擊等因素會導(dǎo)致導(dǎo)波桿觸碰到水位測量筒,使液位測量產(chǎn)生跳變,存在汽水分離再熱系統(tǒng)二級隔離風(fēng)險。受制于現(xiàn)場使用條件,汽水分離再熱器二級疏水箱內(nèi)充滿飽和蒸汽。蒸汽是極性氣體,即蒸汽的介電常數(shù)會根據(jù)環(huán)境的壓力、溫度而改變。介電常數(shù)的變化會影響電磁波的傳播速度。波速度公式為&&&&&&&&&&&&&&&&&&&
由式( 1) 可見,當(dāng)介質(zhì)的介電常數(shù)變化,則波速度會隨之變化。由于電磁波在不同介質(zhì)中的傳輸速度不同,比如在空氣中的傳輸速度比在蒸汽中傳輸速度大,因此 汽 水 分 離 再 熱 系 統(tǒng) ( gas-liquid seperate system,GSS) 二級疏水箱液位計選用的都是蒸汽型導(dǎo)波雷達(dá)液位計[7]。
經(jīng)統(tǒng)計,在功率運(yùn)行期間,汽水分離再熱系統(tǒng)二級液位計共計出現(xiàn)缺陷 91 項。其中,導(dǎo)波雷達(dá)液位計漏汽缺陷共計 38 項,二級疏水箱液位計偏差大共計 46項,因儀表故障導(dǎo)致通道測量不可用共計 7 項。
根據(jù)現(xiàn)場液位計缺陷情況來看,目前汽水分離再熱系統(tǒng)二級液位計主要存在以下故障。
①液位計探桿支撐桿破碎。經(jīng)分析,原汽水分離再熱系統(tǒng)二級液位計所用的高溫型導(dǎo)波雷達(dá)液位計,其探桿支撐件采用聚醚醚酮( PEEK) [8]高分子合成材料。在運(yùn)行過程中,該支撐件會逐漸脆化,在系統(tǒng)沖擊工況下破裂。處理方式: 在測量系統(tǒng)改進(jìn)前,機(jī)組只能通過每次大修期間,對探桿進(jìn)行定期更換。
②液位計探桿密封失效。液位計探桿內(nèi)部密封件采用 PEEK 材料進(jìn)行隔熱,靠近連接部位采用 2 個 O型圈進(jìn)行密封。O 型圈耐溫范圍為 150 ℃ 。因汽水分離再熱系統(tǒng)二級疏水箱內(nèi)部溫度達(dá) 280 ℃ ,探桿隔熱材料失效,進(jìn)而使 O 型圈失效,探桿密封泄漏,測量閃發(fā)質(zhì)量位。處理方式: 目前出現(xiàn)探桿密封失效后,無法進(jìn)行更換。
③液位計冷熱態(tài)工況,液位測量出現(xiàn)偏差。液位計大修冷態(tài)調(diào)試時,3 支液位計偏差小于 20 mm。但汽輪機(jī)沖轉(zhuǎn)并網(wǎng)后,因系統(tǒng)溫度上升,3 支液位計偏差會達(dá)到 100 mm。在機(jī)組運(yùn)行時間長后,液位計偏差也會逐漸增加,導(dǎo)致偏差超過 100 mm。處理方式: 目前只能在熱態(tài)后,對偏差大液位計進(jìn)行修正。機(jī)組功率運(yùn)行后,每周定期巡檢方式,檢查液位計偏差,并及時進(jìn)行修正。
3 改進(jìn)方案
3. 1 導(dǎo)波雷達(dá)液位計支撐件改進(jìn)
原汽水分離再熱系統(tǒng)二級導(dǎo)波雷達(dá)液位計采用PEEK 支撐件,同時也作為探桿隔熱材料。PEEK 是芳香族結(jié)晶型熱塑性高分子材料。PEEK 玻璃化轉(zhuǎn)變溫度為 143 ℃ ,其熔點(diǎn)為 334 ℃ 。這種材料耐抗有機(jī)和水環(huán)境,具有優(yōu)良的化學(xué)性、熱穩(wěn)定性和抗氧化性。目前,應(yīng)用汽水分離再熱系統(tǒng)二級疏水箱實際運(yùn)行溫度為 280 ℃ ,儀表的設(shè)計溫度為350 ℃ ,而 PEEK 物理特性耐溫只有 250 ℃ ,因此運(yùn)行時間過長會產(chǎn)生變形或碎裂。
為應(yīng)對導(dǎo)波雷達(dá)液位計支撐件破碎及密封失效情況,此次支撐件設(shè)計采用 99. 7% 純度的 Al2 O3 陶瓷材料[8]。該材料具有硬度大、耐磨性能極好、質(zhì)量輕等特點(diǎn)。其熔點(diǎn)在 2 000 ℃ 以上,具有良好的導(dǎo)熱性、絕緣性以及透光性,介電常數(shù)為 9. 0 左右,適用于高溫蒸汽型導(dǎo)波雷達(dá)液位計測量原理。Al2 O3 陶瓷的物理和力學(xué)特性如表 1 所示。
改進(jìn)后探桿內(nèi)部結(jié)構(gòu)精密。防止蒸汽部分主元件采用氧化鋁陶瓷,不會因為溫度增高而變形、滲漏。密封元件采用耐高溫的石墨密封 Graphite,是目前儀表產(chǎn)品在防止高溫蒸汽方面的理想材料。其物理性能遠(yuǎn)遠(yuǎn)優(yōu)于以前使用的 PF128、PEEK、鋁礬土等材質(zhì),十分穩(wěn)定可靠。該結(jié)構(gòu)整體密封結(jié)合緊密,可杜絕蒸汽進(jìn)入。
3. 2 導(dǎo)波雷達(dá)液位計高溫補(bǔ)償改進(jìn)
原汽水分離再熱系統(tǒng)二級導(dǎo)波雷達(dá)液位計采用點(diǎn)補(bǔ)償方式,補(bǔ)償點(diǎn)到電磁波發(fā)射口距離為 125 mm。如果測量點(diǎn)以上或者測量點(diǎn)位置有凝露或者誤差,會放大傳導(dǎo)到下方實際液位測量。為了更好地說明上述結(jié)論,定義系數(shù) K。